LiFePO4 microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G

نویسندگان

  • Zhan Jun Li
  • Ghafar Ali
  • Hyun Jin Kim
  • Seong Ho Yoo
  • Sung Oh Cho
چکیده

We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Fenton like degradation of Methylene blue in aqueous solution by using Fe3O4 nanoparticles as catalyst

Fe3O4 nanoparticles were prepared hydrothermally and characterized by X-Ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). It was found that these nanoparticles can act as an efficient catalyst in the degradation of Methylene blue dye in aqueous solution in a Fenton like system in presence of 30% perhydrol. Uv-Vis spectroscopy was used to determine the concentration of ...

متن کامل

Efficient Removal of Diclofenac from Pharmaceutical Wastewater Using Impregnated Zeolite Catalyst in Heterogeneous Fenton Process

In this study, we report removal of Diclofenac (DCF) through heterogeneous Fenton process using Fe-ZSM-5 catalyst. The parent catalyst was prepared by hydrothermal technique. Fe species were introduced by wet impregnation. Characterization of the catalysts was carried out using XRD, FT-IR, FE-SEM, N2 adsorption-desorption, NH3-TPD, and acidimetric-alkalimetric titration. The bimetallic catalyst...

متن کامل

Degradation of crystal violet using copper modified iron oxide as heterogeneous photo-fenton reagent

The heterogeneous photo-Fenton degradation of crystal violet under visible light has been investigated usingcopper modified iron oxide. The photocatalyst has been prepared by coprecipitation method. The rate ofphotocatalyic degradation of dye was monitored spectrophotometrically. It has been observed thatphotocatalytic degradation follows pseudo first order kinetics. The effect of various param...

متن کامل

Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high o...

متن کامل

Controlled synthesis of Bi25FeO40 with different morphologies: growth mechanism and enhanced photo-Fenton catalytic properties.

Bi25FeO40 microtetrahedra, microcubes and microspheres were successfully synthesized by a simple hydrothermal process and by adding different additive agents. The formation mechanism of Bi25FeO40 microcrystals was proposed; the additive agents had important influences on the morphology and facet exposure of the products. The catalytic activity of these materials was evaluated by the degradation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014